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Chapter 1

Getting Started

1.1 Requirements

• C++ compiler compatible with C++-14 (recommended: C++-17)
• OS: The following operating systems are supported:

– Linux (all distributions, glibc >= 2.18)
– Windows
– macOS >= 10.9
– iOS >= 8.0
– Android

• GPU: any modern graphics card compatible with OpenCL, CUDA, or Metal.
• CPU: all common CPUs are supported (current linux builds are available for x86 64, i686,

arm64, arm32, power8)
• optional: cmake >= 3.3

1.2 Installation

Install scripts are provided for Linux and MacOS. Installation is optional, but recommended. Alter-
natively, the location of goopax can be specified to the build system by other means.

Linux

On linux, the script ‘install.sh’ can be run as root to install goopax in the default system
directories.

MacOS

On MacOS, the folder ‘goopax.framework’ should be copied to ‘/Library/Frameworks/’, or to
‘$HOME/Library/Frameworks/’.
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8 Chapter 1. Getting Started

Windows, iOS, Android

No installation scripts are provided for these operating systems. Simply move ‘goopax-windows-4.1.3’
to a custom location and set the paths appropriately (see below).

1.2.1 License File

The license file ‘goopax license.h’ can be placed in the ‘share/goopax/licenses’ subfolder.

1.3 Building Programs

1.3.1 Building Programs with cmake

Cmake is the recommended way to build goopax programs. Simply use package goopax:

find_package(goopax)

And link the resulting target ‘goopax::goopax’ to your program:

target_link_libraries(my_program goopax :: goopax)

If goopax is installed in a non-standard location, the path to <goopax>/share needs to be added
to CMAKE PREFIX PATH.

If goopax license.h is stored in a different location than ‘share/goopax/licenses’, the path to
the folder where it is stored should be set in the ‘GOOPAX LICENSE PATH’ environment variable.

1.3.2 Building Programs without cmake

When using other build systems, it is up to the user to set the paths correctly. The compiler needs
to find the goopax header files, as well as the license file ‘goopax license.h’ in its search path.
The linker needs to link to the goopax library.

1.4 Building the Example Programs

The example programs are a good place to start. Precompiled versions can be found in the ‘bin’,
‘bin32’, or ‘bin64’ folders. The source code is located in folder ‘examples’. The examples can be
built with cmake in the usual way, e.g.,

cd examples

mkdir build

cd build

cmake ..

cmake --build .

www.goopax.com



Chapter 2

Programming with Goopax

2.1 Program Structure

2.1.1 Including Header Files

To use Goopax, include the header file from your source code:

#include <goopax >

For OpenGL interoperability, include

#include <goopax_gl >

For OpenCL interoperability, include

#include <goopax_cl >

For Metal interoperability, include

#include <goopax_metal >

2.1.2 Namespaces

[sec:namespaces] The basic Goopax functionalities are found in namespace ’goopax’. For simplicity,
we will assume that you import this namespace:

using namespace goopax; // Basic GOOPAX types , such as buffer and gpu_float .

Optionally, one of the following namespaces can be used, for debug and release mode data types,
respectively:

using namespace goopax :: debug::types; // Debugging data types Tint , Tfloat , ...

using namespace goopax :: release :: types; // Release data types Tint , Tfloat , ...

For some functions that are provided by the C++ standard library, an overloaded function may be
provided in the namespace “std”.

2.2 Memory

In the GPU kernels, there are four types of memory:

9



10 Chapter 2. Programming with Goopax

• Private memory is not shared. Each thread has its own private memory.

• Local memory is shared between the threads in a work group. It is only valid during thread
execution. Local memory can be used for thread communication within a work group, as well
as sharing small data structures during kernel execution between the threads of a work group.

• Global memory is usually referred to as the main memory of a video card. It can be used to
store the data used in calculations, and to share data between all threads, and between GPU
and CPU. Global memory is accessible by all threads, and also from the CPU.

• lvm memory can be used across different devices and CPUs, within a single unified address
space.

2.2.1 Private Memory

Private memory is allocated as follows:

private_mem <float > A(16);

This will allocate an array of 16 floats for each thread.

2.2.2 Local Memory

Local memory is only available during the execution of a kernel. Each work group has its own local
memory. Local memory is useful for communication within a work group. Between work groups no
sharing is possible.

Local memory is declared as local mem<type>, which has the constructor

local_mem(size_t size)

For example:

local_mem <double > mem (256);

will allocate 256 doubles in local memory for each group.

2.2.3 Global Memory

Global memory must be declared on the CPU side as a buffer and on the GPU side as a resource.

Buffer

On the CPU side, the memory is declared as buffer<type>, where the element type is specified
as a template parameter. The constructor takes the argument

buffer(goopax_device device , size_t size)

For example:

buffer <float > buf(default_device (), 10);

will allocate a global buffer on the video card of type float and size global size().

www.goopax.com



2.2. Memory 11

Resource

The resource<type> is declared from within a GPU kernel and has to match a corresponding
buffer. Resources can either be declared as parameters, e.g.,
struct my_kernel :

public kernel <my_kernel >

{

void program(resource <int >& A)

{

<GPU code...>

}

}

or it can be declared within the kernel body and linked to a specific memory buffer:
struct my_kernel :

public kernel <my_kernel >

{

buffer <float > Bb (1000);

// <...>

void program (...)

{

resource <float > Br(Bb);

}

}

When the former constructor is used, the corresponding memory buffer has to be specified as an
argument when calling the kernel. With the latter constructor, the resource can already be linked
to a specific buffer, so that the buffer does not have to be supplied when executing the kernel.

2.2.4 Svm Memory

Svm memory is declared in a similar way as global memory, e.g.,
buffer <float > buf(default_device (), 10);

Instead of declaring a resource in the kernel, svm memory is accessed via a pointer. The pointer can
be provided to the kernel via a normal parameter, e.g.,
void program(gpu_type <double*> ptr)

Not all devices support svm memory. Whether svm memory is supported can be checked with the
function device::support svm().

2.2.5 Memory Access

All memory types can be accessed within a kernel by the usual [] operator or by iterators.

2.2.6 Data Transfer from Host to GPU and from GPU to Host

Data transfer via DMA to and from the video card can be done with the following member functions
of global memory buffer types.

copy to host(T* p)

Copies data from the buffer to the address in host memory specified by p.
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12 Chapter 2. Programming with Goopax

copy to host(T* p, size t beginpos, size t endpos)

Copies data from the buffer to the address in host memory specified by p, in the range from position
beginpos to endpos-1 within the buffer.

copy from host(T* p)

Copies data from the host address p to the buffer.

copy from host(T* p, size t beginpos, size t endpos)

Copies data from the host address p to the buffer, in the range from position beginpos to endpos-1
within the buffer.

2.2.7 Barriers

To avoid race conditions, it is sometimes necessary to place barriers between memory accesses,
especially when local threads are communicating with each other. Race conditions can occur when
two or more threads access the same memory address and their access is not properly synchronized.

Local barriers

Threads within a workgroup can be synchronized by calling the local barrier() function, for
example:

local_mem <float > a(local_size ());

a[local_id ()] = 2;

local_barrier ();

gpu_float b = a[( local_id () + 5) % local_size ()];

Without the barrier, a race condition would occur. Note: Local barriers only synchronize memory
access within a work group. Memory between different groups is not synchronized.

Global Barriers

Global barriers can be placed to synchronize threads across workgroups:

resource <float > A;

resource <float > B;

A[global_id ()] = 5;

B[2* global_id ()] = 7;

global_barrier (); // This will place a barrier on all threads.

gpu_float x = A[0] + B[129];

www.goopax.com



2.3. User-Defined Types in Memory Access 13

2.3 User-Defined Types in Memory Access

In addition to using intrinsic types, memory access can also be done with user-defined classes. This
can simplify code development and provide a more structured and safe way of accessing the data
structures.

The following restrictions apply:

• The class must fully contain all the data of the data structure. Members that use external
memory, such as std::vector are not allowed. However, one can use members of type
std::array, or other classes that don’t allocate memory.

• The data types used in the struct must be provided as template arguments (or being derived
from them).

• Virtual functions or virtual base classes cannot be used.

To use user-defines types, additional information must be provided. In the general case, this requires
providing specializations of the following structs:

• provide specialization of “goopax::goopax struct type” that returns the characteristic data
type.

• provide specialization of “goopax::goopax struct changetype” in namespace “goopax”
as a type change mechanism.

For structs where all template parameters are types used in the data structure, the predefined macro
GOOPAX PREPARE STRUCT can be used instead. It must be used in the main scope, not within a
namespace, and template arguments must be omitted.

GOOPAX PREPARE STRUCT

template <typename A, typename B> struct pair

{

A first;

B second;

};

// Easy case: Only types are used as template arguments . Can use the macro as follows:

GOOPAX_PREPARE_STRUCT(pair)

General case

template <typename T, size_t N>

struct array

{

T data[N];

};

// Template arguments include non -types.

// Need to provide the following specializations by hand:

namespace goopax {

template <typename T, size_t N>

struct goopax_struct_type <array <T, N>>

{

using type = T;

};
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14 Chapter 2. Programming with Goopax

template <typename T, size_t N, typename X>

struct goopax_struct_changetype <array <T, N>, X>

{

using type = array <typename goopax_struct_changetype <T, X>::type , N>;

};

}

2.3.1 Memory Access

Buffers and resources of the new type can be declared in the same way as buffers with intrinsic
types, e.g.:

...

resource <complex <float >> my_global_resource;

local_mem <complex <float >> my_local_resource(local_size ());

...

int main()

{

...

buffer <complex <float >> my_buffer(default_device (), size);

}

The new type can be accessed in the usual C++ way. Some examples are shown here:

// assigning one item

my_global_resource[global_id ()]. real = 2.3;

// copying a complete element

my_local_resource[local_id ()] = my_global_resource [12];

// modifying one item

my_global_resource[global_id ()]. imag += 25;

2.4 Images

Special data access is provided for images and image arrays. From the host code, images can be
allocated with objects of type “image buffer”. From the device code, images can be accessed by
using objects of type “image resource”. For more information, see the goopax reference.

2.5 GPU Kernels

Kernels are the functions that run on the video card and are typically used for the computationally
demanding calculations.

2.5.1 Writing Kernel Classes, old syntax

GPU kernel classes are derived from the class template ’kernel’, which takes the name of the user-
defined kernel class as template argument. They should contain a function program(. . . ) with the
code which will be executed on the video card. A kernel might look like this:

class my_kernel :

public kernel <my_kernel >

{

public:

void program (<... resources ...>)
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2.5. GPU Kernels 15

{

<GPU code...>

}

};

Kernel Instantiation

Before a kernel is first executed, it has to be instantiated, i.e., an object of the kernel class has to
be created:

my_kernel MyKernel;

The kernel can be declared as a static object. The kernel object is not bound to any specific device
and can be executed on all available devices.

2.5.2 Writing Kernel Classes, new syntax

Starting from goopax 4.1.0, a new syntax for kernels is introduced. GPU kernel are specified as
objects of type goopax::kernel<arg t>, where arg t is the function type. The device and the
function with the kernel code are provided to the constructor.

2.5.3 Calling a Kernel

The kernel is executed by calling the ’()’ operator and passing the required buffers as arguments
for all the unspecified resources. For example, if the kernel declares two resources

kernel <void(buffer <float >& A, const buffer <int >& B)>

my_kernel(default_device (),

[]( resource <float >& A, const resource <int >& B)

{

...

};

or, with C++17 template type deduction guides,

kernel

my_kernel(default_device (),

[]( resource <float >& A, const resource <int >& B)

{

...

};

then the kernel must be called with two buffers as arguments of the same type and in the same
order, i.e.

buffer <float > A(default_device (), 100);

buffer <int > B(default_device (), global_size ());

MyKernel(A, B);

All kernel calls are asynchronous. The call will, in most cases, return immediately. Only when the
results are accessed, the CPU will wait for the kernel to finish.

2.5.4 Valid Kernel Arguments

Valid kernel arguments are buffers, input values, gather values, and images. The CPU argument type
from the kernel call must correspond to the matching GPU argument type in the kernel definition:
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16 Chapter 2. Programming with Goopax

CPU argument type Kernel argument type

T gpu T

buffer<T>& resource<T>&
const buffer<T>& const resource<T>&
image buffer<DIM, T>& image resource<DIM, T>&
image array buffer<DIM, T>& image array resource<DIM, T>&
goopax future<T> gather result<T>&

Here, T can be any intrinsic type or goopax struct. gpu T is the corresponding GPU type.

2.5.5 Gathering Return Values

Return values can be combined from all threads, reduced into single values. The return type of
the corresponding kernel argument is gather result<T>, which has to be constructed from an
appropriate reduction operator class. Pre-defined reduction operators are:

class description

gather add calculate the sum of all values
gather min calculate the minimum of all values
gather max calculate the maximum of all values

Instead of using these pre-defined classes, user-defined classes can be used. For more information,
see the example program “gather” or the header file “src/gather.h”.

goopax future

Gather values are wrapped into objects of type “goopax future”. Their behavior is sim-
ilar to “std::future” of the standard C++ library. The actual values are returned by the
“goopax future::get()” function. If the return type of the kernel function is void, goopax future<void>
is returned when calling the kernel. Any goopax future return object can be used to query infor-
mation about the number of threads in the kernel, or the execution status.

Gathering values as references

When using references, multiple gather values can be used.
Example:

kernel testprog(device , []( gather_result <int >& minID , gather_result <int >& maxID)

{

minID = gather_min(global_id ());

maxID = gather_max(global_id ());

});

goopax_future <int > minID;

goopax_future <int > maxID;

testprog(minID , maxID);

cout << "minimum id=" << minID.get() << endl

<< "maximum id=" << maxID.get() << endl;
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2.6. Data Types 17

Gathering values as return values

Returning gathered values is done as shown in the following example:

kernel testprog(device , []() -> gather_result <float >

{

return gather_add(global_id ());

});

goopax_future <float > sum = testprog ();

cout << "sum of thread IDs=" << sum.get() << endl;

2.6 Data Types

2.6.1 Basic GPU Data Types

Special data types are used to declare local variables that reside on the video card. The programming
of GPU kernels relies on these data types. The following basic types are available:

GPU type Corresponding CPU type

gpu type<T>, gpu T T (T is an intrinsic type)
gpu type<S*> S* (S is an intrinsic type, or a user-defined struct)
gpu type<const S*> const S* (S is an intrinsic type, or a user-defined struct)

Valid intrinsic types are float, double, half, any integral type (signed or unsigned, 8, 16, 32, or 64
bits), or bool.

Variables of GPU type are used in the kernel function, or as local variables in other functions and
classes that are called from the kernel function. They may only be used within the call stack of the
kernel function.

2.6.2 CPU Types and GPU Types

In kernel development, we distinguish between variables of CPU type and of GPU type. This is not
to be mistaken with the device type (section [sec:device]). Regardless of the device type, a CPU
variable is an ordinary variable of the main program, whereas a GPU variable is a variable (typically
a register) that resides on the device. Although kernel development relies on the use of GPU types,
using CPU types within a kernel can sometimes simplify programming, and improve performance,
as they are treated as constant expressions from the perspective of the GPU kernel.

Both CPU and GPU types can be used together in kernel programs. Instructions that use CPU types
are calculated during kernel compilation. They are the equivalent of what constant expressions are
in ordinary programs, and they will not use any GPU resources.

Hence, variables can be sorted into four different types of life cycle:

• CPU-based compile-time – Constant expressions that may be evaluated by the C++ com-
piler. Has no effect on the runtime of your program.

• CPU-based run-time – CPU variables evaluated at runtime. Has no effect on GPU kernels.
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• GPU-based compile-time – GPU variables that can be evaluated by Goopax during kernel
creation. May increase compilation time of the GPU kernels, but has no effect on the kernel
runtime.

• GPU-based run-time These are the runtime variables that are used in kernel.

2.6.3 Matching CPU and GPU Types

It is sometimes necessary to get the corresponding CPU type from a GPU type or vice versa,
especially when the type in question is a template parameter. This can be done with the structs
goopax::make cpu, and goopax::make gpu. For a given input type T,

typename make_cpu <T>:: type

is the CPU type, and

typename make_gpu <T>:: type

is the GPU type. The type T can be a fundamental type, or a goopax struct.

2.6.4 Changing GPU/CPU Types

When writing template functions that should be valid both for CPU types and for GPU types, it is
sometimes necessary to specify a type without knowing whether it will be used by the CPU or by
the GPU.

The “change gpu mode” struct can generate a type regardless of whether it is for CPU or for GPU
context. It takes a CPU type as template argument.

// T may be , e.g., float or gpu_float , or goopax :: debug :: types :: Tfloat

template <class T> struct foo

{

// If T is float , then D is double. If T is gpu_float , then D is gpu_double .

using D = typename change_gpu_mode <double , T>:: type;

};

2.6.5 Type Conversion Rules

Implicit Type Conversion

To avoid performance pitfalls, implicit type conversion is stricter than the usual type conversion of
C++. Conversion will only be done automatically if the precision of the resulting type is at least as
large as of the source type. Also, type conversion is done implicitly from integral types to floating
point types, but not in the other direction from floating point types to integral types. No implicit
type conversion is done from signed integral type to unsigned integral type.
Some examples of implicit type conversion:

gpu_float a = 2.5; // ok , converting CPU double to GPU float.

gpu_double b = -3.7;

gpu_float c = b; // Error: No implicit conversion from gpu_double to gpu_float .

gpu_float c = static_cast <gpu_float >(b); // ok , explicit type conversion .

gpu_double d = a + b; // ok , implicit conversion to type with higher precision.
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Explicit Type Conversion

If the type conversion is not done implicitly, the type conversion can still be done explicitly in the
usual C/C++ way, for example:

gpu_int64 a = 12345;

gpu_int b = (gpu_int)a;

gpu_int16 c = gpu_int16(b);

gpu_uint d = static_cast <gpu_uint >(b);

Type Conversion from CPU to GPU

Types are implicitly converted from CPU type to GPU type. The rules are slightly relaxed, as
compared to GPU/GPU type conversion: CPU types can implicitly be converted to GPU types of
lower precision. However, conversion from a CPU floating point type to a GPU integer type still
requires explicit conversion.
Some examples:

int a = 5;

gpu_int b = a;

gpu_float c = 3.0; // Conversion from double to gpu_float is ok.

gpu_int d = 3.0; // Error: no implicit conversion from CPU floating point to GPU int.

Conversion in the other direction is not possible. A GPU type cannot be converted to a CPU type.

2.6.6 Reinterpret

Sometimes it is necessary to change the data type of a value without changing the binary content.
The reinterpret function provides a general-purpose conversion mechanism. It is defined as:

template <class TO, class FROM >

TO reinterpret(const FROM& from);

The source data is provided as a function parameter, and the destination type is provided as template
argument. The “reinterpret” function can be used on various data types (GPU types, CPU types,
user-defined GPU classes, pointers, buffers).
Some Examples:

gpu_int a = 5;

gpu_float b = reinterpret <gpu_float >(a); // Reinterpreting gpu_int to gpu_float

gpu_double c = reinterpret <gpu_double >(a); // Error: different size!

array <gpu_int , 2> v = {{2, 3}};

gpu_double d = reinterpret <gpu_double >(v); // Array of 2 gpu_ints to gpu_double .

int i = 2;

float f = reinterpret <float >(i); // bit -casting a CPU value.

buffer <float > bf(device , 10);

buffer <int > bi = reinterpret <buffer <int >>(bf); // changing buffer value type

gpu_type <int*> p;

gpu_type <float*> pf = reinterpret <float*>(p); // changing pointer type
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2.7 Thread Model

The major difference between CPUs and GPUs is the level of parallelism. While CPUs are designed
for serial computation, GPUs work vastly parallel, with thousands of threads working in parallel on
a common goal.

2.7.1 Thread Numbers

Kernels are executed by all GPU threads in parallel. Each thread can query its ID by the functions
local id(), group id(), and global id() as described below. The threads are organized into
several work groups, where each work group in turn consists of several local threads. Depending
on the hardware, the threads in a work group may or may not work in unison, executing SIMD
instructions that apply to all threads in that group at once. In any case, threads within a work group
have better means of communicating with each other than threads that are in different work groups.
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The number of local threads per group is given by local size(). The number of groups is given
by num groups(). The total number of threads is therefore the product

global_size () = num_groups () * local_size ().

Within a kernel, the local thread id can be queried by local id(), the group id by group id(),
and the global id by global id(). The global id is calculated as

global_id () == group_id () * local_size () + local_id ().

For simple programs that can easily be parallelized, it may be sufficient to ignore the detailed thread
model and to simply assume that the total number of threads is global size(), and that each
individual thread has the ID global id(). For more complex programs, it may be beneficial to take
the thread model into account and to separate the threads into work groups.

The group size and the number of groups can vary from one video card to another. The programmer
should normally not make assumptions on these values, but always query them from local size()

and num groups(). Although it is possible to manually set these values by the member functions
“force local size()”, “force num groups()”, etc (see reference guide), one should normally
not do this and let Goopax decide which thread sizes to use.
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2.7.2 Threads of the same Work Group

Work groups are assumed to work in sync. They cannot branch off into different if-clauses or loops.
Whenever only some threads of a work group enter an if clause, the other threads in the group must
wait. The same is true for loops. To optimize performance, one should usually make sure that either
all threads in a work group enter an if-clause or none, and that the number of loop executions is
similar or equal for all threads in the group in order to avoid waiting times.

Threads of the same work group can communicate with each other via local memory or global
memory.

2.7.3 Different Thread Groups

Different work groups can branch off into different if-clauses or for-loops. However, they cannot easily
communicate with each other within one kernel execution. Atomic operations (section [sec:atomic])
offer some means of communication between different work groups.

Another possibility for communication between threads in different work-groups is to wait until the
kernel execution has finished. Between two kernel calls it is guaranteed that all memory resources
are synchronized.

2.8 Flow Control

2.8.1 Conditional Function

Simple if-statements can be expressed by a conditional function (the equivalent of the C/C++
conditional operator “a ? b : c”):

T cond(gpu_bool condition , T return value if true , T return value if false)

2.8.2 If Clauses

For more complex statements that cannot be expressed as a conditional move, gpu if can be used
instead. Example:

gpu_if (local_id () == 0)

{

a = 17;

}

2.8.3 Loops

gpu for

Usage:

gpu_for <typename comp_t=std::less <>>(begin , end [,step], <lambda >);

Examples:
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gpu_for(0, 10, [&]( gpu_uint i) // Counts from 0 to 9.

{

...

});

gpu_for <std:: less_equal <>>(gpu_uint i=0, 10, 2) // Counts from 0 to 10 with step 2.

{

...

});

gpu for global

The gpu for global loop is parallelized over all threads. It is provided for convenience.

gpu_for_global (0, N, [&]( gpu_uint i)

{

...

});

is equivalent to

gpu_for(global_id(), N, global_size (), [&]( gpu_uint i)

{

...

});

gpu for local

The gpu for local loop is parallelized over all threads in a work-group.

gpu_for_local (0, N, [&]( gpu_uint i)

{

...

});

is equivalent to

gpu_for(local_id(), N, local_size (), [&]( gpu_uint i)

{

...

});

gpu break

Breaks out of a loop. It is called as a function of the loop variable. Usage example:

gpu_for(0, 10, [&]( gpu_int i)

{

gpu_if(i==5)

{

i.gpu_break ();

}

});

It is also possible to break out of a two-dimensional loop:

gpu_for(0, 10, [&]( gpu_uint a)

{

gpu_for(0, 10, [&]( gpu_uint b)

{

gpu_if(a + b == 15)

{
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a.gpu_break (); // Break out of both loops.

}

});

});

C-Style Loops

Traditional for-loops can also be used. They require that all loop boundaries are CPU values and
therefore known to Goopax. The advantage is that the loop variable is also a CPU value, so that
it can be used to address elements in vectors or arrays. In the following example, the sum of all
elements of a 3D vector is calculated. The loop will be explicitly unrolled and all the calculation is
done in registers.

std::array <gpu_float , 3> x = {{1 ,2 ,3}}; // A 3D vector

gpu_float sum = 0;

for (int k=0; k<3; ++k)

{

sum += x[k];

}

Or, equivalently,

gpu_float sum = std:: accumulate(x.begin(), x.end(), 0);

Warning: Using traditional C-style loops results in explicit loop unrolling. They should only be used
in GPU kernels when the number of loop cycles are reasonably low!

2.9 Atomic Operations

Atomic memory operations are guaranteed to be indivisable and thread-safe. For example, if two
threads atomically increase the value at the same memory location by 1, then the value will be
increased by 2 in total, without the danger of getting into a race condition.

Atomic memory operations are supported on both global and local memory. The referenced memory
objects must be 32 bit integers, or 64 bit integers. Atomic operations on 64 bit integers is not
supported on all devices.

Example:

void program(resource <Tuint >& a)

{

// Each thread adds 5 to a[0].

gpu_uint k = atomic_add(a[0], 5);

}

2.9.1 Atomic Functions

The following atomic functions are supported.

In these functions, REF is a reference to a location in global or local memory, and may reference
to a value within a user-defined struct. T is the value type of the memory and must be one of
“gpu int”, “gpu uint”, “gpu int64”, “gpu uint64”.
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T atomic add(REF, T value)

Adds value to the memory location referenced by REF . The original value is returned.

T atomic sub(REF, T value)

Subtracts value to the memory location referenced by REF . The original value is returned.

T atomic min(REF, T value)

Calculates the minimum value. The original value is returned.

T atomic max(REF, T value)

Calculates the maximum value. The original value is returned.

T atomic and(REF, T value)

Calculates bitwise and. The original value is returned.

T atomic or(REF, T value)

Calculates bitwise or. The original value is returned.

T atomic xor(REF, T value)

Calculates bitwise xor. The original value is returned.

T atomic xchg(REF, T value)

Exchanges value with the memory location referenced by REF . Returns the original value. T must
be one of “gpu int”, “gpu uint”, “gpu float”, “gpu int64”, “gpu uint64”, or “gpu double”.

T atomic cmpxchg(REF, T cmp, T value)

Compares cmp with the memory location referenced by REF . If both are the same, write value to
the memory location. The original value is returned. T must be one of “gpu int”, “gpu uint”,
“gpu int64”, “gpu uint64”.
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2.10 General Programming Guidelines

Programming with Goopax is generally safe. Most programming errors are detected at compile-time,
some are detected at program run-time. Others can be detected by the extensive error checking
mechanisms. However, there are a few things one should keep in mind.

2.10.1 Using existing non-goopax libraries

Many existing template-libraries can be used with goopax, by using gpu types as template arguments.
This is generally safe. If the code is compiled successfully, it will work. If the function cannot be
used, because it contains if-clause or loops, the compiler will produce an error.

2.10.2 CPU loops and Recursive Calls

Using C/C++-style loops and recursive function calls can result in very fast kernel code. However,
because the resulting code is completely unrolled, this can quickly use up the available registers.
Only use CPU loops if the number of iterations is small.

2.10.3 Break, return, continue

Use caution when using these statements in kernels.

break, continue

Never use break or continue statements within an gpu if clause, or within GPU loops. Use
gpu break or gpu continue instead.

return

Never use the return statement within an gpu if clause or within GPU loops. Always return values
at the end of the function.

2.10.4 CPU/GPU interoperability

It is often useful to define functions and classes in such a way, that they can be used both from
CPU code and from GPU code, depending on the type of the template parameters. This can result
in more compact, more maintenable code. Simple functions may work without modifications. If the
function contains if clauses or loops, additional modifications may have to be applied. To simplify
programming, certain goopax statements can be used both in CPU code and GPU code:

gpu for, gpu for (global|local|group), for each, for each (global local group)

If the loop variable is of CPU type, then these loops will behave as normal C++ loops and can be
used in CPU code. The global, local, and group loops are treated as their normal gpu for
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or for each pendants, respectively.

gpu if, gpu else, gpu elseif

If the conditional variable can be converted to bool, these statements will be treated as normal
C/C++ if/else statements.

2.10.5 Number of Threads

The number of threads that are used in kernel execution are typically not specified by the programmer,
but are chosen by goopax, depending on how many threads work best on the GPU. The number
of threads may vary from kernel to kernel, depending on register use. Upper limits are provided by
global size(), local size(), and num groups().
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Operators and Functions

All the usual C++ operators and math functions have been overloaded for the GPU types and may
freely be used. Only the conditional operator (“a ? b : c”) must be replaced by the conditional
function cond.

3.1 Operators

3.1.1 Operators for Floating Point numbers and Integers

• Arithmetic: “+”, “-”, “*”, “/”

• Increment/Decrement: “++”, “--”

• Comparison: “==”, “!=”, “>”, “>=”, “<”, “<=”

• Assignment: “=”

• Compound assignment operators: “+=”, “-=”, “*=”, “/=”

3.1.2 Operators for Integers

• shift operators:

– “<<”

– “>>”

Left/right shift a by b bits. b must be smaller than the number of bits in a.

• “&” (binary and), “|” (binary or), “^” (binary xor)

• “%” (modulo operator)

• Compound assignment operators: “<<=”, “>>=”, “&=”, “|=”, “^=”, “%=” %=
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3.1.3 Boolean Operators

• && (boolean and)

• “||” (boolean or)

• “!” (boolean not)

3.2 Floating Point Functions

Mathematical functions on GPU types can be used in the same way as they are used on CPU types,
for example:

gpu_float x = 0.5;

gpu_float s = exp(x);

Goopax will use the best implementation for the given video card, based on performance measure-
ments. It will select between native functions, OpenCL implementations, and Goopax implementa-
tions.

3.2.1 Unary Functions

• cos, cospi, acos, acospi

• sin, sinpi, asin, asinpi

• tan, tanpi

• sinh, asinh

• cosh, acosh

• tanh

• exp, exp2

• log, log2

• sqrt, cbrt

• erf, erfc

• tgamma

• ceil, floor, round

• isfinite, isinf, isnan, isnormal

3.3 Integer Functions

T clz(T)

Returns the number of leading zeros.
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gpu uint popcount(T)

Counts the number of bits set to 1.

T rotl(T a, gpu int bits)

Rotate left. bits can be any number, positive, negative, or zero.

T rotr(T a, gpu int bits)

Rotate right. bits can be any number, positive, negative, or zero.

3.4 Functions for Integers and Floats

gpu T min(gpu T a, gpu T b)

Returns the minimum value of a and b.

gpu T max(gpu T a, gpu T b)

Returns the maximum value of a and b.

gpu TU abs(gpu T a)

Returns the absolute value of a. If a is a signed integer, the result is an unsigned integer.

3.5 Work-Group Functions

gpu bool work group any(gpu bool x)

Returns true if x is true for any thread in the work-group.

gpu bool work group all(gpu bool x)

Returns true if x is true for all threads in the work-group.

T work group reduce add(T x)

Returns the sum of all values of x in the work-group.
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T work group reduce min(T x)

Returns the minimum value of x in the work-group.

T work group reduce max(T x)

Returns the maximum value of x in the work-group.

T work group broadcast(T x, gpu uint local id)

Broadcasts value x to thread local id in the work-group.

work group scan inclusive (T x)
work group scan exclusive (T x)

Does a prefix-sum operation over all threads in the work-group. may be sum, min, or max.
Example:

local id 0 1 2 3 4 . . .

x 1 0 2 5 1
work group scan inclusive add 1 1 3 8 9
work group scan exclusive add 0 1 1 3 8

3.6 Random Numbers

Goopax provides a WELL512 random number generator. It is very fast – all the calculation is done
in registers – at the expense that the random numbers should be used in blocks.

To use the random numbers, it is first necessary to create an object of type WELL512, which
contains a buffer object to store the seed values. Then, in the GPU kernel program, an object of
type WELL512lib should be created, which will provide the random numbers. The constructor of
WELL512lib takes the WELL512 object as input parameter.

The function WELL512lib::gen vec<type>() returns a vector of random numbers of the specified
type (which can be of floating point or integral type). The size of this vector depends on its type. It
is 8 for 64-bit values, 16 for 32-bit values, and larger for smaller integer types. The best performance
is achieved if all values in the vector are used before a new vector is generated. Floating point random
numbers are in the range 0..1, unsigned integers from 0 to the maximum value, integers from the
largest negative value to the largest positive value.

See the following example:

struct random_example :

kernel <random_example >

{

WELL512 rnd; // Object for the seed values

void program ()

{
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WELL512lib rnd(this ->rnd); // Instantiate the random number generator

vector <gpu_float > rnd_values = rnd.gen_vec <float >(); // Generate random floats

...

}

};
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Error Checking Mechanisms

4.1 Overview

Goopax offers extensive support for automatic error checking. This includes

• Checking for overflow of memory resources

• Checking that all variables are properly initialized

• Detecting race conditions

These error checking mechanisms can be enabled to look for bugs in the program. They are not
intended for use in release mode, because they cannot be run on the video card, and they also reduce
performance for CPU mode.

4.2 Enabling Error Detection Mechanisms

For error detection mechanisms, special debug data types are provided in the namespace goopax::debug::types.
Debug types are prefixed by “T”, e.g., “Tfloat”, “Tuint64 t”, or “Tbool”. In difference to the
corresponding intrinsic types, debug types will detect and report the use of uninitialized variables.
If used in buffers, race conditions will be detected.

4.2.1 Using the Debug Namespace

The proposed way is to import the namespace goopax::debug::types in debug mode and the
namespace goopax::release::types in release mode.

Your program could start like this:

#include <goopax >

using namespace goopax;

#if USE_DEBUG_MODE

using namespace goopax :: debug::types;

#else

using namespace goopax :: release :: types;

#endif
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Here, the debug mode is enabled by the compiler switch “USE DEBUG MODE”.

4.2.2 Enabling Error Checking in Kernels

To enable error checks in the kernels, all buffer, resource, and local mem types should use
T-prefixed types, like this:

struct my_kernel :

kernel <my_kernel >

{

buffer <Tdouble > A;

void program ()

{

resource <Tdouble > A(this ->A);

local_mem <Tint > B(2* local_size ());

...

}

...

};

...

This will enable all error checks in the kernels, if the data types from the debug namespace are used.

4.2.3 Extending the Error Checks to the CPU Program

Error checking mechanism can also be used in the CPU program, by using the T-prefixed data types
throughout the program, instead of intrinsic c++ data types. This will provide extensive checks for
variable initialization.

This should work in most cases. However, be aware that this may cause compilation errors from
time to time (for example, the main function requires plain C++ types, as do constant expressions).
Such errors have to be resolved by explicit type conversions or by reverting to the C++ intrinsic
types.

Warning: Be cautious about sizeof! The sizes of debug variables are larger than the sizes of the
original data types. Use

gettype <}{\it type }}>:: size

instead, it will return the size of the original, intrinsic C++ type, and can be used on GPU types as
well:

sizeof(int) // returns 4

sizeof(Tint) // undefined , don ’t use!

sizeof(gpu_int) // undefined , don ’t use!

gettype <Tint >:: size // returns 4

gettype <gpu_int >:: size // returns 4

4.3 Running Programs in Debug Mode

The debug mode is only available on the CPU device. The CPU device can be selected with env CPU

when calling the functions default device or devices. By default, the number of threads is equal
to the number of available CPU cores, and the number of groups is 1. The number of threads can be
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changed by calling the force local size and force num group member functions of the device.
This may be helpful to mimic the behavior of the video card.

4.4 Debugging Errors

When an error is detected, an appropriate error message is generated and the program is terminated.
A debugger can be used to pin down the point where the error occurs.

To do this, it is helpful to disable optimization and to enable debugging symbols by passing ap-
propriate compiler options with the GOOPAX CXXADD environment variable and to disable coroutines
with GOOPAX COROUTINES=0.
Example:

GOOPAX_CXXADD=’-O0 -ggdb3 ’ GOOPAX_COROUTINES =0 gdb ./ my_program
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OpenCL Interoperability

Goopax can be used in conjunction with existing OpenCL code. For this to work, the same OpenCL
platform, context, and device must be used in Goopax and in your OpenCL code, and the same
OpenCL queue should be shared between OpenCL and Goopax. Memory buffers can then be shared
between Goopax and OpenCL.

To use OpenCL Interoperability, the header file <goopax cl> must be included:

#include <goopax_cl >

To see how OpenCL interoperability is applied, also see the example programs “cl interop 1” and
“cl interop-2”.

5.1 Accessing Goopax Resources from OpenCL

The following functions provide access to Goopax resources from OpenCL code.

Platform:

cl_platform_id get_cl_platform ()

Returns the OpenCL platform that is used by Goopax.

Context:

cl_context get_cl_context ()

cl:: Context get_cl_cxx_context ()

Returns the OpenCL context that is used by Goopax.

Device:

cl_device_id get_cl_device ()

Returns the OpenCL device that is used by Goopax.
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Buffers and Images:

template <class BUF > inline cl_mem get_cl_mem(const BUF& buf)

template <class BUF > inline cl:: Buffer get_cl_cxx_buf(const BUF& buf)

Returns the OpenCL memory handle for the Goopax buffer or image.
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OpenGL Interoperability

Goopax can share memory resources with OpenGL.

6.1 OpenGL Initialization

To enable OpenGL support, the goopax device must be retrieved from the get device from gl

function.

6.2 Sharing Buffers and Images with OpenGL

Goopax images and buffers can be created from existing OpenGL objects by using the static member
functions “create from gl”.

buffer :: create_from_gl(goopax_device device , GLuint GLres , uint64_t cl_flags=CL_MEM_READ_WRITE)

image_buffer :: create_from_gl(GLuint GLres , uint64_t cl_flag=CL_MEM_READ_WRITE ,

GLuint GLtarget=GL_TEXTURE_2D , GLint miplevel =0)

GLres: The OpenGL object ID.

cl flags: The OpenCL access mode.

GLtarget: The OpenGL object type.

GLint: The OpenGL miplevel

For example, if “gl id” is the ID of a 2-dimensional OpenGL texture with 32 bit data size, then

image_buffer <2, uint32_t > A = image_buffer <2, uint32_t >:: create_from_gl(gl_id)

creates an image “A” that can be used with Goopax.
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Chapter 7

Example Programs

The source code of these programs is included in the goopax package.

7.1 pi

This program approximates the value of π in a very simple way: It uses a WELL512 random number
generator to produce points in a 2-dimensional space 0 < x < 1 and 0 < y < 1 and counts, how
many of those points lie within a circle of radius 1 from the origin, i.e. x2 + y2 < 1. This fraction
multiplied by 4 approximates the value π. This program supports MPI and can be run with the
mpirun command to combine the computing power of several hosts or video cards.

7.2 Mandelbrot

This program calculates a Mandelbrot image and uses OpenGL to draw it on the screen. It is an
interactive program that can be controlled with the left mouse button and the forward and backward
arrow keys.

7.3 Deep Zoom Mandelbrot

This is a somewhat more complex Mandelbrot program, combining arbitrary-precision arithmetics
on the CPU with a special algorithm of our design. It allows to zoom in to large magnification levels
(factor 1080 and more), and still display the result in real time.

7.4 fft

This program applies Fourier transforms on live camera images, and filters out high frequencies or
low frequencies.
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7.5 nbody

N-body simulation. Two colliding galaxies are simulated, each consisting of particles. Each particle
interacts via gravity with all other particles. The particles are displayed via OpenGL.

7.6 matmul

The example program ’matmul’ performs matrix multiplications. It uses the näıve multiplication
algorithm. For productive purposes, faster algorithms such as Strassen’s algorithm should be con-
sidered as well. The major performance bottleneck is the memory access. Three different algorithms
are implemented that use different techniques to reduce the access to global memory.

7.6.1 Näıve Implementation

l

l

m

kk

m

A C

B

In the näıve implementation, a 2-dimensional loop is executed over all matrix elements in the result
matrix C, with indices k and m. This loop is parallelized over all threads, so that every element in
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C is handled by exactly one thread. For every matrix element, the value C[k][m] is calculated as a
dot product of the k’th row of matrix A and the m’th column of matrix B.

The problem with this näıve implementation is the frequent access to global memory.

7.6.2 Caching sub-Blocks in Registers
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In the matmul reg implementation, the matrix C is divided into sub-matrices of block size B1m x
B1k. Each block in the result matrix C is handled by exactly one thread. For the calculation of the
sub-blocks of matrix C, the values of the corresponding blocks of matrices A and B are stored in
registers. This reduces the number of memory accesses to matrix A by a factor B1m and to matrix
B by a factor B1k.
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7.6.3 Caching sub-Blocks in Registers and Local Memory

B1m

B1k

B2k

B2m
The matmul reg and localmem implementation takes the tiling one step further and uses both
registers and local memory. Result matrix C is divided into large blocks of size (B1m × B2m) ×
(B1k ×B2k). Each large block is handled by one work-group. This large block is sub-divided into
small blocks of size B1m × B1k, one block for every thread in the work-group. Each thread then
computes its small block, using registers for the small block calculation, and local memory to fetch
the data from within the large block.
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